Segregation of a Latent High Adiposity Phenotype in Families with a History of Type 2 Diabetes Mellitus Implicates Rare Obesity-Susceptibility Genetic Variants with Large Effects in Diabetes-Related Obesity.
Abstract
Background
We recently reported significantly greater weight gain in non-diabetic healthy subjects with a 1st degree family history (FH+) of type 2 diabetes mellitus (T2DM) than in a matched control group without such history (FH−) during voluntary overfeeding, implying co-inheritance of susceptibilities to T2DM and obesity. We have estimated the extent and mode of inheritance of susceptibility to increased adiposity in FH+.
Methods
Normoglycaemic participants were categorised either FH+ (≥1 1st degree relative with T2DM, 50F/30M, age 45±14 (SD) yr) or FH− (71F/51M, age 43±14 yr). Log-transformed anthropometric measurements (height, hip and waist circumferences) and lean, bone and fat mass (Dual Energy X-ray Absorptiometry) data were analysed by rotated Factor Analysis. The age- and gender-adjusted distributions of indices of adiposity in FH+ were assessed by fits to a bimodal model and by relative risk ratios (RR, FH+/FH−) and interpreted in a purely genetic model of FH effects.
Results
The two orthogonal factors extracted, interpretable as Frame and Adiposity accounted for 80% of the variance in the input data. FH+ was associated with significantly higher Adiposity scores (p<0.01) without affecting Frame scores. Adiposity scores in FH+ conformed to a bimodal normal distribution, consistent with dominant expression of major susceptibility genes with 59% (95% CI 40%, 74%) of individuals under the higher mode. Calculated risk allele frequencies were 0.09 (0.02, 0.23) in FH−, 0.36 (0.22, 0.48) in FH+ and 0.62 (0.36, 0.88) in unobserved T2DM-affected family members.
Conclusions
The segregation of Adiposity in T2DM-affected families is consistent with dominant expression of rare risk variants with major effects, which are expressed in over half of FH+ and which can account for most T2DM-associated obesity in our population. The calculated risk allele frequency in FH− suggests that rare genetic variants could also account for a substantial fraction of the prevalent obesity in this society.
Citation: Jenkins AB, Batterham M, Samocha-Bonet D, Tonks K, Greenfield JR, et al. (2013) Segregation of a Latent High Adiposity Phenotype in Families with a History of Type 2 Diabetes Mellitus Implicates Rare Obesity-Susceptibility Genetic Variants with Large Effects in Diabetes-Related Obesity. PLoS ONE 8(8): e70435. doi:10.1371/journal.pone.0070435
Editor: Alberico Catapano, University of Milan, Italy
Received: March 28, 2013; Accepted: June 14, 2013; Published: August 7, 2013
Copyright: © 2013 Jenkins et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Funding: The studies were funded by grants and fellowships awarded by the National Health and Medical Research Council of Australia. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
Competing interests: The authors have declared that no competing interests exist.
Graham
2 comments:
Recommended read
Jeff
Yet more evidence that diabetes causes obesity not vice versa.
I can understand how some finding they put on weight very easily but don't know why would just give up and give in and eat even more thus causing full blown diabetes which might have been avoided.
There have been attempts to rubbish the genetic factor -why then are we asked about it on diagnosis and advised to inform our siblings etc?
Its time for some honesty.
Kath
Post a Comment